2014.10.16. ICDM

Review of the Clinical Trials on Vascular Complications of Diabetes

Hyun Min Kim

Division of Endocrinology & Metabolism, Department of Internal Medicine, Chung-Ang University College of Medicine

Disclosures

• No conflicts of interest

Contents

- Introduction
- Atherosclerosis
- Diabetic Nephropathy
- Diabetic Retinopathy
- Summary

Introduction

- The vascular complications of diabetes are among the most serious manifestations of diabetes mellitus
- Well-established clinical advances in preventing vascular complications of diabetes include intensive blood glucose lowering, antihypertensive medicine, panretinal photocoagulation, and statin therapy
- Despite these advances, diabetes complications remain a serious public health problem

Steno-2 : Risk of Diabetic Retinopathy

Steno-2 : Risk of Diabetic Retinopathy

Steno-2 : Risk of Diabetic Retinopathy

Steno-2 : Risk of Diabetic Nephropathy

Steno-2 : Risk of Diabetic Nephropathy

Nat Rev Endocrinol, 2010

Steno-2 : Risk of Diabetic Nephropathy

Nat Rev Endocrinol, 2010

Atherosclerosis	Diabetic Nephropathy	Diabetic Retinopathy
	Dual blocker – Fail	
Aleglitazar	Protein kinase C-β inhibitors	Plasma Kallikrein
Protein kinase C-δ	Bardoxolone methyl	Infibitor
inhibitors	Inhibitors of AGE formation	Angiopoietin-2
Canakinumab Aliskiren	Endothelin-receptor antagonists	Intravenous infliximab
Eplerenone Darapladib	Mineralocorticoid receptor antagonists	CCR2/CCR5 receptor antagonist
•	CCR2/CCR5 receptor antagonist	

Atherosclerosis

- Atherosclerosis is the primary cause of cardiovascular diseases, and these conditions that affect the cerebral, coronary and peripheral vasculature represent the most common cause of morbidity and mortality in diabetic patients
 - Traditionally, viewed as a passive process of lipid accumulation trapped in the vessel wall resulting formation of an atherosclerotic plaque
 - In the past two to three decades, identified the importance of inflammation as a critical pathway responsible for the initiation and perpetuation of atherosclerosis

J Am Coll Cardiol, 2009 Expert Opin. Emerging Drugs, 2013

Current Therapy

- Smoking cessation
- Blood glucose control
- Blood pressure control
- Cholesterol management with statin therapy
- Antiplatelet agents
- Renin-angiotensin-aldosterone blockers
- β-adrenergic blockers
- Increased physical activity
- Weight reduction
- Influenza vaccination, depression screening and cardiac rehabilitation

Aleglitazar

- Potent dual PPAR α/γ agonist with balanced affinity
 - ↑ Fatty acid uptake
 - ↑ Fatty acid oxidation
 - ↑ ApoA1, HDL
 - ↓ VLDL-TG
 - ↓ Apo-CIII
 - Anti inflammatory

PPARα Improve plasma lipid profile ↑ Insulin sensitivity

- ↑ Beta cell function
- ↑ Fatty acid uptake
- ↑ Adiponectin secretion
- Anti inflammatory

PPARγ Improve insulin sensitivity

Trial	Phase	Drug	Study population
NCT01715818	III	Aleglitazar	T2DM, with evidence of prior MI or ischemic stroke ≥ 3 months
NCT01042769	III	Aleglitazar	T2DM, hospitalization for ACS event within 12 wks

AleCardio

- Phase III, double blinded, randomized controlled, multicenter study
- 7226 patients hospitalized for ACS (MI or UA) with T2DM
- Aleglitazar 150µg vs. placebo
- Followed-up for at least 2.5 years

Conclusions

- ✓ improved A1C, TG, and HDL-cholesterol levels
- \checkmark did not reduce the risk of cardiac mortality, MI, or stroke
- ✓ increased risk of heart failure, renal dysfunction (reversible), bone fractures, and GI hemorrhage
 These findings do not support the use of aleglitazar to reduce CV risk

JAMA, 2014

Anti-inflammatory therapy

Trial	Phase	Drug	Study population
NCT00605475	II	Canakinumab	T2DM
NCT01068860	II	Canakinumab	T2DM or IGT
NCT00947427	II	Canakinumab	T1DM
NCT00995930	II	Canakinumab	T2DM for ≤ 14 years or IGT, known atherosclerotic disease
NCT01327846	111	Canakinumab	T2DM, spontaneous MI at least 30 days before randomization. hsCRP≥2 mg/L
NCT01594333		Methotrexate	T2DM or MS, MI or multi- vessel CAD in the past 5 yrs

Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS)

Cardiovascular Inflammation Reduction Trial (CIRT)

Studies Assessing CV Outcomes in T2DM Drugs (Recently Completed or Ongoing)

Trial Name	Drug	No.	Timing
DPP-4 Inhibitors			
SAVOR	Saxagliptin	16,492	Began 2010; Complete
EXAMINE	Alogliptin	5384	Began 2009; Complete
TECOS	Sitagliptin	14,000	Began 2008; Ending 2014
CAROLINA	Linagliptin	6000	Began 2010; Ending 2018
CARMELINA	Linagliptin	8300	Began 2013; Ending 2018
GLP-1 Agonists			
ELIXA	Lixisenatide	6000	Began 2010; Ending 2014
EXSCEL	Exenatide	9500	Began 2010; Ending 2017
LEADER	Liraglutide	9340	Began 2010; Ending 2016
REWIND	Dulaglutide	9622	Began 2011; Ending 2019
SGLT-2 Inhibitors			
CANVAS	Canagliflozin	4410	Began 2009; Ending 2018
C-SCADE 8	Empagliflozin	7000	Began 2010; Ending 2018
DECLARE	Dapagliflozin	17,150	Began 2013; Ending 2019

Diabetic Nephropathy

- Diabetic kidney disease remains the most common cause of ESRD in developed countries, accounting for 25–40% of incident patients, indicating the need for additional therapeutic approaches beyond the RAS
- In the past few years, several major trials have failed to show a favorable risk to benefit ratio for diabetic kidney disease
 - Dual blockade of RAS, PKC-β inhibitor (ruboxistaurin), sulodexide, AGE formation inhibitors (pimagedine, pyridoxamine)

Current Therapy

- Blood pressure control
- Blood glucose control
- Renin–angiotensin system (RAS) blockers
 - antialbuminuric and antihypertensive effects

Endothelin-receptor antagonists

Endothelin

Most potent and long lasting vasoconstrictor

Autocrine & Paracrine

Affects multiple system

Three isoforms - ET1, ET2, and ET3

Two receptor isoforms - ETA and ETB

ETA receptor	ETB receptor	
Affinity : ET1 , ET2 > ET3	Affinity : ET1 = ET2 = ET3	
Primary vasoconstrictor,	Vasodilator, vasoconstrictor, inhibit	
growth promoting	cell growth	
Vascular smooth muscle cells	Vascular smooth muscle cells,	
	endothelial cells	

Trial	Phase	Drug	Study population
NCT01424319	II	Atrasentan	T2DM, GFR >30 ml/min/1.73 m2, UACR ≥200 mg/g, on RAS blockade
NCT 1356849	II	Atrasentan	T2DM, eGFR 30–75 ml/min/1.73 m2, UACR 300–3,500 mg/g, on RAS blockade
NCT00920764	Ш	Atrasentan	T2DM, eGFR >20 ml/min/1.73 m2, UACR 100–3,000 mg/g, on RAS blockade
NCT00160225	П	Daglutril (ECE inhibitor)	T2DM, eGFR 70-90 ml/min/1.73m2 UACR 20-999 µg/min, on RAS blockade

Trial	Phase	Drug	Study population
NCT01399580	II	Atrasentan	T2DM, eGFR 30–75 ml/min/1.73 m2, UACR 300– 3,500 mg/g, on RAS blockade
NCT00120328	III	Avosentan	T2DM, sCr 114.92–265.2 µmol/l (M) or 106.08–265.2 µmol/l (F), UACR ≥300 mg/g, on RAS blockade
NCT01858532		Atrasentan	T2DM, eGFR 25-75 ml/min/1.73 m2, UACR 300–5,000 mg/g, on RAS blockade

Avosentan for Overt Diabetic Nephropathy (ASCEND)

- 1,392 patients with T2DM, UACR ≥300 mg/g, on RAS blockade
- 25mg/d avosentan vs. 50mg/d avosentan vs. placebo
- Pren ✓ Afte exc 11.5 / For placeboly dominated by field overload and congestive heart failure Congestive heart failure
- ✓ Avosentan significantly reduced ACR

Study of diabetic Nephropathy with atrasentan (SONAR)

CCR2/CCR5 antagonists

CCR2

- Expressed abundantly inflammatory subset of blood monocytes, dendritic cells, and memory Th1 cells
- CCR2/MCP-1 axis has an essential role in the tissue recruitment of inflammatory cells

CCR5

- Expressed on macrophages, osteoclasts, and VSMCs
- In vivo function of CCR5 is less well defined
- Possible role atherosclerosis and accelerated intimal hyperplasia

Trial	Phase	Drug	Study population
NCT01712061	II	PF-04634817 (dual CCR2/5 antagonist)	T2DM, eGFR 20–75 ml/min/1.73 m², UACR ≥300 mg/g, on RAS blockade
NCT01752985	II	BMS-813160 (dual CCR2/5 antagonist)	T2DM, UACR 200–3,500 mg/g, on RAS blockade
NCT01440257	II	CCX140-B (CCR2 antagnoist)	T2DM, eGFR ≥25 ml/min/1.73 m ² , UACR 100– 3,000 mg/g, on RAS blockade
NCT01447147		CCX140-B (CCR2 antagnoist)	T2DM, eGFR ≥25 ml/min/1.73 m ² , UACR 100– 3,000 mg/g, on RAS blockade

Diabetic Retinopathy

- Diabetic eye disease is a leading cause of vision loss in adults
- Diabetic macular edema (DME)
 - It affects central vision and can lead to decline in vision ranging from slight visual blurring to blindness

normal macula

Current Therapy

- Laser photocoagulation
- Vitrectomy
- Intravitreal steroids
- Intraocular anti-VEGF therapy

VEGF inhibitors

- Ranibizumab: approved by FDA for DME (August 2012)
- Aflibercept
- Bevacizumab
- Pegaptanib sodium

Trial	Phase	Drug	Study population
NCT00284050 (RESOLVE)	II	Ranibizumab	T1/T2 DM, clinically significant DME with central involvement
NCT00989989 (REVEAL)	II	Ranibizumab	T1/T2 DM, visual acuity impairment d/t DME
NCT00687804 (RESTORE)	Ш	Ranibizumab	T1/T2 DM, visual acuity impairment d/t DME
NCT01982435 (REACT)	I/II	Ranibizumab	T1/T2 DM, clinically significant DME, previous bevacizumab injections

3-Year Outcomes of Individualized Ranibizumab Treatment in Patients with DME: The RESTORE Extension Study

- Phase IIIb, multicenter, 12-month, randomized core study and 24-month open-label extension study
- 240 patients with T1DM or T2DM, visual acuity impairment d/t DME

These results confirmed the favorable efficacy and safety profiles of ranibizumab in the long-term treatment of DME

- Ranibizumab was effective in visual and anatomic endpoints with a progressively declining number of injections over 3 years of individualized dosing.
- Ranibizumab was generally well tolerated over 3 years

Trial	Phase	Drug	Study population
NCT00789477 (DA VINCI)	Ш	Aflibercept	T1/T2 DM, clinically significant DME with central involvement
NCT01512966 (VIVID-Japan)	III	Aflibercept	T1/T2 DM, clinically significant DME with central involvement, Japanese
NCT01909791	ш	Aflibercept	T1/T2 DM, confirmed DME on OCT
NCT01363440 (VISTA-DME)	III	Aflibercept	T1/T2 DM, decrease in vision due to DME
NCT01331681 (VIVID-DME)	III	Aflibercept	T1/T2 DM, decrease in vision due to DME

Intravitreal Aflibercept Injection for DME: Primary and Additional Endpoint Results from Phase 3 VISTA-DME & VIVID-DME Studies

- T1/T2 DM, clinically significant DME
- IVT-AFL 2 mg every 4 weeks (2q4) plus sham laser vs.
 IVT-AFL 2 mg every 8 weeks (2q8) plus sham laser vs.
 Macular laser treatment plus IVT-sham treatment
- Aflibercept showed superiority in all visual
 and anatomic endpoints with similar efficacy in the 2q4 and 2q8 treatment groups

Conclusion

 Aflibercept groups demonstrated significant and robust superiority of VA endpoints over laser photocoagulation with similar efficacy in the 2q4 and 2q8 treatment groups

Angiopoietin -TIE Receptor Pathway

Angiopoietin

- Ang1 (agonist for Tie2 receptor), essential for angiogenesis and stabilizes vessels
- Ang2 (competitive antagonist of Tie2 receptor), promotes vessel destabilization

✓ AKB-9778

 First-in-class small molecule that works by inhibiting the human protein tyrosine phosphatase β (HPTPβ) enzyme, which acts as a negative regulator of the Tie2 receptor

Trial	Phase	Drug	Study population
NCT01702441	1/11	AKB-9778 (Tie-2 activator)	T1/T2 DM, decrease in vision due to DME
NCT02050828	II	AKB-9778 (Tie-2 activator)	T1/T2 DM, decrease in vision due to DME

PF-04856884 (Metastatic RCC, Phase 2, NCT01441414) CEP-11981 (Advanced cancer, Phase 1, NCT00875264) AMG-386 (Ovarian cancer, Phase 3, NCT01204749)

Novel Tie-2 Activator, in Patients With Diabetic Macular Edema (TIME-2 Study)

Plasma kallikrein inhibitor

Plasma kallikrein-kinin system (KKS)

- Activated during vascular injury
- Intraocular KKS induces retinal vascular permeability, vasodilation, and retinal thickening, and exacerbated response → potential therapeutic targets for DME

Trial	Phase	Drug	Study population
NCT02193113	I	KVD001 (plasma kallikrein inhibitor)	T1/T2 DM, decrease in vision due to DME

Biol. Chem. 2013

Summary

- Despite major advances in our understanding of the mechanisms, few new drugs are coming to market
- Ongoing clinical trials are testing novel approaches that target signaling pathways, inflammation, or angiogenesis
 - Atherosclerosis: canakinumab, low dose MTX
 - Nephropathy: atrasentan, CCR2/5 antagonists
 - Diabetic macular edema: aflibercept, Tie-2 activator, plasma kallikrein inhibitor
- The safety profile of novel agents is critical since drugs for diabetic vascular complication must be designed for long-term administration

Thank you for your attention!!!

